skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fredston‐Hermann, Alexa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Species around the world are shifting their ranges in response to climate change. To make robust predictions about climate‐related colonizations and extinctions, it is vital to understand the dynamics of range edges. This study is among the first to examine annual dynamics of cold and warm range edges, as most global change studies average observational data over space or over time. We analyzed annual range edge dynamics of marine fishes—both at the individual species level and pooled into cold‐ and warm‐edge assemblages—in a multi‐decade time‐series of trawl surveys conducted on the Northeast US Shelf during a period of rapid warming. We tested whether cold edges show stronger evidence of climate tracking than warm edges (due to non‐climate processes or time lags at the warm edge; thebiogeography hypothesisorextinction debt hypothesis), or whether they tracked temperature change equally (due to the influence of habitat suitability; theecophysiology hypothesis). In addition to exploring correlations with regional temperature change, we calculated species‐ and assemblage‐specific sea bottom and sea surface temperature isotherms and used them to predict range edge position. Cold edges shifted further and tracked sea surface and bottom temperature isotherms to a greater degree than warm edges. Mixed‐effects models revealed that for a one‐degree latitude shift in isotherm position, cold edges shifted 0.47 degrees of latitude, and warm edges shifted only 0.28 degrees. Our results suggest that cold range edges are tracking climate change better than warm range edges, invalidating the ecophysiology hypothesis. We also found that even among highly mobile marine ectotherms in a global warming hotspot, few species are fully keeping pace with climate. 
    more » « less